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noises , that {X~} converges w.p.l. to the closest point in G

to the optimum value of X . Also , under even weaker con” .~.tions ,
the case of constant coeff~cient sequence is treated , and ~ 

weak
convergence result obtained. The set G is used for simplicity .
It can be seen that the result holds true in more general cases
but the box is used since it is the only commonly used constraint
set for this problem.
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A PROJECTED STOCHASTIC APPROX IMATION METHOD

FOR ADAPTIV E FILTERS AND IDENTIFIERS
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Abstract

Generally, when stochastic approximation is used to

H e nt i f y  the coefficients of a linear system or for an adaptive I ~
filter or equalizer , the iterate X~ is projected back onto some

finite set c = { x : Ix
~ I < B , all i}, if it ever leaves it. The

• convergence of such truncated sequences have been discussed in-

• formally. Here it is shown , under very broad conditions on the

noises , that {X~ t converges w.p.l. to the closest point in G

to the optimum value of X~ . Also , under even weaker conditions ,

the case of constant coefficient sequence is treated , and a weak

convergence result obtained. The set G is used for simplicity.

• It can he seen that the result holds true in more general cases

bu t the box is used since it is the only commonly used constraint
I

set ’ for this problem .
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• ~\ TZ ~s ,-.,.,..r Introd uction

~.-1orcncc (i--~ deals with a great variety of stochastic

approximation procedures , for cons tra ined and uncons tra ined

systems and for convergence w.p.l. and weak convergence , all for

systems with correlated inputs. The techniques n.F~ [1] are readily

usable for many problems that are not explicitly treated there.

• This will be illustrated here for one particular class of con-

strained problems which is of great current interest and which

arises in identification and in adaptive control theory. In fact ,

it is just such constrained problems to which more attention

should be given , owing to their prevalence. The proofs a4e con-

tam ed in various parts a4- 414—~nd , here , after the problem is

defined , it is shown how to put the bits and pieces together . The

The problem and method are typical of a large class of adaptive

sy s t e m s  w h i c h  can be treated by similar methods , and is worth

s i n g l i n g  ou t .  ~

The problem will be set up in such a way that it fits both

a standard identification problem and a standard problem in

adaptive equalizers. Let {d~} denote a scalar v~lued desired
output sequence , perhaps a training or reference signal , or output
of the system to be identified . The problem can readily be set up

• so that all quantities ~~~~~~~~~~ ~~~~~ are comp lex va lued , but
in the interest of simplicity, we suppose that they are rea l

valued. Le’ {u } denote an input sequence set E

and let be a noise sequence , independent of {u~}. The ob-
served adaptive system output at time n is defined by
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r-l

~ ~~~~~~ 
y~ , and the ‘per turb ed ’ observed reference at t ime n is

1=0

+ p~ . The idea in [2], (31, [4] and in many other papers is
to adjust the system parameter X,.~ = (X nø~

...,Xn r j )’ so that

the output (y~} ‘best matches ’ the {d~} in a mean square sense.

A common recursive adaptive algorithm for doing this is

X~~1 = X~ - ~~~~~~ c~ = 
n ’

~n~~n~
(1.1)

= X~ 
- 

~~~~~~~~~~~~~~~ a~ + 0 , ~ a~ = ~~, a > 0.

Algorithm (1.1) has been the focus of an enormous amount

of effort. In practice , there is usually given a bound B such
• that if some IX~1I > B, then X

11~ is immediately reset to the

closest value +B or -B. This projected version has received

little attention . Ljung (2] discusses it , but deals with it only

when the optimum value of X~ is strictly inside the box

G = {x :~ x1~ < B~ } .  The methods of ( 1] can read ily handle such

problems whether or not the unconstrained optimum is in G.

• As sumptions are stated in Section 2. These are of the type used

in [1] and are quite unrestrictive. In Section 3, it is shown

that {X~} converges w.p.l (under assumptions in Section 2) to

the point in C which is closest to the optimum value . Incidentally,

if the optimWn is strictly interior to G, then the rate of con-

vergence results in [51 hold. Section 4 deals with a formulation •

~~~~~ ~~~~~~~~~~~~~~~~~~ 

•:T
~~~~~ 

..• •  _ _ _ _ _ _

~~~~~~~~~~ 
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where a~ ~ ‘ 0, a constant , and discusses some limit results

of a ‘weak convergence ’ nature , also using techniques from (1].

In many of the proofs in (ii , it is assumed that the

iterate sequence {x~
} is hounded in some sense. Owing to the

possible use of the projection algorithm (as in this paper) , this

hound edness a s sumpt ion  is hardly a restriction . This is one of

the  secondary p o i n t s  of t h i s  paper .

2 .  Asst~~p t ions  for w . p . l .  Convergence.
n-i

Define m(t) max (n;t~ < t } , t > 0 , where t~ ~ ~ a~i•0

= 0 , t < 0.

A l .  There is  a pos i t ive  d e f i n i t e  symmetr ic  m a t r i x  R such

that for each c > 0 and some I <

InUT+t)-l
(2.1) u r n  P{sup max ! ~ a~(~ 1tIi1-R) I c} •O

n-’~ j>n t<T i=m(jT)

A2. There is a vector S such that (2.1) holds with

replacing (~P~~~-R). •~

A3. (2.ID holds with t’~
p
~ replac ing (~‘~4 1-R).

Note that (Al) - (A3) imply that

a~[I4 ’~* I  + l*~d~I + . 0 w.p.l as n -, 
~~~~.

‘94 ~
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m ( t + s )
Also , J ~ a . ( q . , ~~-R) ~ 0 as t ~~~~, u n i f o r m l y  on bounded

i—m(t) 1 1

s-intervals w.p .1. and similar ly for the cases of (A2), (A3).

(See [1, Lemma 2.2.flfor the proof.)

Assumptions (Al) - (A3) are quite unrestricti ve , [1, p .3O 381

gives several ways of readily verifying them , and they

hold in practical cases where (at least) the sequences {un~
pn idn)

are stationary. The reader is referred to the cited reference

for more detail. We note only that the criteria for (Al) - (A3)

in Ii] can be weakened even further by a finer use of laws of

l a rge  numbers and estimates of the type [l,(2.2.8)] which give
i - •

hounds on F max ~ ~.j 2 in terms of bounds on the correlation
n<i<N n ~

function of {~~~). (Al) • (A3) hold when (i~~~1-R}~ etc., obey

certain 1a~ s of large numbers or when their covariances go to zero

sufficientl y fast. P.g., if the processes are stationary and the

covariances arc summable , and ~(a~log 2i)
2 < ~~~~, then they hold.

(I , Theo rem 2 . 2 . 2 1 .

3. Conver~ enc e w.p .l.

For any x , let it6(x) denote the nearest point on C to x.

Then the truncated or projected form of (1.1) is

- X~ 
- 

~~~~~~~~~~~~~~ X~ - hi (X n s~n
)
~

(3.1)

WG (X n+l) ‘

where~~~~ ~~~~~~~~~~ 

•
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Define h(x) = -Rx + S. and 0 = R 1S. Th en h ( x )  = -R(x-0).

Define the projectio n iT(h(x)) of the vector field given

by h ( x )  onto C by

~(h(x)) = t i m  [n
~

( x + A h ( x ) ) - x J / ~~.

Then X = 1i(h(x)) is the ‘constrained ’ or ‘projected ’ flow

corresponding to x = h(x). Basically , the limits of {X~ } are

those of the so lu t i on  to  x = ~ ( h ( x ) ) ,  i~hich in this case is the
a

n e a r e s t  p o i n t  on C to 0.

1 ~Theorem 1. Assume (Al)-(A3). Then {x~} gjyen ~~ (3.1),

conver ses w . p . l  to the closest  p~Jnt  fl
~~

( e)  G t o  0 ,

~j~t±mal v a l u e .

P roo f .  The various parts of the proof appear in [1, Theorem 5.3.1)
(projection algorithm) and (1, Theorem 2.4.1 and 2.4.2] (a general

unconstraine d Robbins-Monro algorithm) , and in order to avoid

duplicatio n we will merely put the pieces together.

By (Al) - (A3), )Xn+i~
Xn ) 

•~~ 0 w.p.l and there is a sequence

of positive real numbers + 0 as n -
~~ ~~~~, such that

IX n+i •••X I < y~/2 except for a finite number of terms, w.p .l.

Let In E ind icator of the set ~~~~~~ ~ l’n~
’2L Define

_ _ _  ~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~ . - -- - - —
~~~~~~~~~~~~~~~~~~~~~ ~~~
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a1~
h i (X~~

,
~~~

) I , v1~ 
X~ - ai~~i

(Xn ,Cn) 
= Xn+i~

E [flG (V~~
) - v~ 1, 

~~ 
(v~ -v~) + (~~.(v~) 

• X ] ’ l - I ).

Then 
.

(3.2) X~~~1 
= - a~ h 1 (X

11
,~~~) + + 

~~~~~~

.

Following [1, Theorem 5.3.1], define t~~( • )  and ~0(.), resp.,

to he the piecewise l i n e a r  functions on [0 ,~) with values
n- i  n—I

• 
~ a~~~r~~ and 

~ 
a1~ 1, resp.. at t ime t~ . Let T

hi ( )  =

- T
0
(t ), ~~ ( . )  = ~° (t

11~~.) - ~°(t~). Let X°(-) and

denote the piecewise constant functions on [0 ,~) which

• are equal to and 
~~~~~~

, resp., on [t~~t~+1
), where

t~ = ~ a 1. D e f i n e  fl~~( t )  J~ 
h1(~°(t~ +S), ~~(t~ +S))ds, and

let X 0(t) denote the piecewise linear function with value Xn
at t~ and set X”(.) X”(t~ +•) . Then (X”(O) = X~)

X”(t) — X~ (O) + H~ (t) + •~(t) + r~~(t).

not in one of the exce ptional se ts of zero probab ilit y
of (Al) - (As). Then as in [1 , Theorem 5.3.1], •~l(.) ... 0

un iform ly on bounded in tervals as n + ~~~~. Similarly (following

L ____
L ;

-

~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the same proof) if (ti~ ( . ) }  were equicontinuous,

then so would {i”(-)) and {X lL(.)) be.

Suppose for the  momen t tha t {ii~(.)) is equ i-

con t inuous .  Then we can select a subsequence (also indexed by n)

such that all X~ (.), X~ (O), }I~ (.), ~‘~
( ) ,  r~ (•) converge

• uniformly on bounded intervals , w i th l imi ts deno ted by X(),

X(O), Ill (.), 0, T ( • ) .  Then

(t
(3 .3)  X ( t )  = X( O)  + I 111 (s)ds + r(t).

J O  ‘
a

We need only prove the equicontinuity of {H~(.)} and characterize

This is done in the next two paragraphs. It will turn out

that H1(s) = -R X ( s )  + S. But , then the proof of [1 , Theorem

5.3.1) implies that

* = W (- RX + S) = W~( -R( X - 0 ) ) .

• Define f(x) E ( x - 0 ) ’ ( x - O ) .  Then f ( x )  (x-0)’i(-R(x-O)), and

(1 , Theorem 5.3.11 implies our theorem because the only points where

1(x) = 0 are x = 0 and x = 
~~~~ 

(which equals o when

0 E G ) . The uniqueness of the solution to the l imi t ing  differential

equa tion (for each X( 0) ) ,ai~d the uniqueness of its limit point ,

imply that the particular fixed w and the chosen subsequence ale

irrelevant. 

.~~~
- - ‘: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::• . t .• • • . - i r_~~- 4 ~
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q~~~ 2~~~~~!J_cy  of {U ~ ( ’ ) }  fo r  t h e f i xe d  ~~~~. The equi-

cen t  i nu i t v and the character i zat ion of ( . ) f o l l o w  by use of

t h t ’  method  of ( 1~~ Theor ems 2 . 4 .1 and 2.4 .21 . If {F,,~} is a

bounded sequence , then  {Il ~ ( • 1 ~ is obv ious ly  e q u i c o n t i n u o u s

cince h 1 (X
0(u )  ,~

0(u) I is u n i f ormly  bounded . Othe rwi se , use

the meth od of (1 , Th eorem 2 . 4 . 2 1 ,  whose co nditions a r e implied

by (A l) - (A31 . ~~e can w r i t e

X
1 

= - a~~(1~~~~-R )X + ~~~~~~~~~~~~~~~

- a (RX -S) + + T .

Un i form contin uity on (O ,~~) of the piecewise linear function
n - I

with value ~ a.(~~.d. +p. ’~.-S) at t follows from (A2,3)
i=O ~ 1~~~ 1 fl

for our fixed w . (See the second sentenCehelow (A3).)

We only need show uniform continu i~~ on IO ,~~) of the
n-l

p i ecewise linear function with value ~ a .H 1~ 1- R )  at t~~.1=0 1

Pnc e th i s  js done , U~ (.), the sh i f ted s equ ence ,w i l l  obviousl y

he equi c o n t i n u o u s  ( t he  X~ c o e f f i c i e n t ,

• I 
~ in~ hounded , i s  n ot i m p o r t a n t ) .  Let 

~‘n = 

~
‘nO’~ 

-

It is su f f i c i en t to show the unif orm con tinu ity for the l i nea r

in t er p o l a t i o n t 
of { 1 aj ~~~J for each i .  But t h i s  fo l lows  from

(Al), which Implies that ~ ~~~~ increases
j = 0  ~ 3’

asymptotically as ~ a~R11 = t R.., since (see note below (A3))
j = 0  I~ 11

m ( t + s) 2a (‘P 
~~~

- R11)~ 0 uniformly on bounded s-intervals as
i—m(t) ~

t +

— 

~ i e , the piecewise ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



l l~~( - ) .  Let n s t i l l  inde x

the  co nvergen t  suh c eq t i e nce .  For our f i x e d  ~, we need only

show that

m (t +t)
(3.4) a.(~~.4 . -R )X. -

~~ 0 un i formly on bounded
j=m( tn) ~ ~

• t-int erv als as n -
~~

since it follows from t h is and (A 2 ,3) that 1f l( .)  + - R X ( . ) + S ,

as desired.

I 3 . 4 ( ~~~an r e a d i l y be done by f o l l o w i n g almos t word for  wor~ the t
met hod o f proof of a s i m i l a r  r esu l t in [I , Th eorem 2 .4 .1] , wi th

the identifications e( jX -x’ I) = const..IX-X’ ( g~ constant and
r - l

• g,(~~1
) = 

~ 
Th en (Al ) i m p l i e s  (3 .4) . Th e ar gumen t in the

- i=O

reference shows that the (X~ } f l u c tua t ions are ’slow enoug h ’ i n

comparison with those of the (‘~j’PJ 
- R) for the limit of

(3 . -2) to he the same as it would be if X~ were a cons tan t .

Q.E.D.

4. Constant a B > 0.

Theorems 4.3.1 and 6.2.3 present the analogs of Theorems

2.4.1 and 5.3.1 , resp., under weaker conditions than (Al) - (A3)

~,ut where the convergence is in a weak sense. Instead of adapting

them to the current projec t ion probl em , we merely formulate their

use in another related and very important problem : algorithm (3.1)

where a~ B > 0. Indeed , many, if not most , uses of (3.1) use

constant coefficients a~ B, (at least for the ‘tails ’ - once

— -—~~~~~~~~~••~~~~~~ • T~~ L1~~~~—~~ -~~~~~~~~~ • • ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~. ~~~~~~
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the ‘ t rans ien t ’ period is over). For small B, it might  take

quite a while for (transient period) X~ to ge t near its l imi t

(B or the projection of 0 on G). We are concerned (more or

less) with what occurs after this transient period. Let X~

denote the solution to (3.1) and define X B ( .)  = p iecewise linear

interpolation (intervals B) of fX~ }. Let N
B 

be a sequence

of in tegers (rou ghly defining the transient period , perhaps), such -

that N B -* and N
BB 

-. as B + 0. •

A4. Let 
~~ 

repre sent (‘P~ ’P~ -R) or ‘P~d~ 
- S or ’~P~ P~ .

Uere m(t) = [t/B] the integral part of t/B. Assume

m(t+s) S

~~~~ P {m ax I a~~ I > c > O } = 0 , any T <
t~~ s< ’I’ i=m(t)

each c > 0 .

This condition is discussed after the Theorem.

Theorem 2. Assume that EI’P~ ’P~~!
2 , E I ’ Pn Pn t 2 and Et ’P~d~~I

2 
~1.2.

uniformly bounded , and assume (A4). Then {X8(N
B
B+ )} converges

weakly  (in the func t ion space CT [O ,o~)) to the constant function

as B -
~~ 0, where 

~~~~ 
= nearest point to 0 on G. 

•

In particular X~ B+k ~~~~ 
in probability as B 0, each

B
Ic > 0i and more s t rongly

lirn P { sup I X ~ 8+k ~~ G (0) I > c > 0) = 0 for each t
B~ 0 k < t / B  B

____  
• 

and c > : .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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I
Thus for small B and large n , (X~) ‘hovers ’ around 1IC(O)

as desi red .

t

The proof will not be given since it follows the  general  l ines

of the appropriate’ parts of (1 , Theorems 4.3.1 and 6.2.3], which ,

in t u r n , are jus t  weak convergence analogs  of the theorems upon

w h i c h  Theorem i is based . To adap t the proofs of E l i to the present

H case , mere ly  replace the shifted sequences X”(-), etc. o El] by

etc. If is bounded as assumed above then , by

[1 , Theorem 4 . 1 . 1]  (A4) holds if there are R(i) such that

< R(i) -
~~ 0 as i + m, a very weak cond i t ion  indeed .

Conclus ions . The projected i t e r a t e  sequence converge w . p . l  to -

•

the  c loses t  po in t  on G to the opt imum (converges in prob~~~i1ity

in the weak convergence case) .

__________ • • — - ~
-.---

~~~~~~ ‘~~ ~~~~~~~ ~ •

• 
•
~~ •~~~~~ ~~~~~~~~~~~~~~~~~~~

\ ~~~~~~~~~~~~~~~~~~~~~~~ 
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